PA-1180	[Total No. of Pages: 3
Total No. of Questions : 8]	SEAT No. :

[5925]-202

S.E. (Civil Engineering)

MECHANICS OF STRUCTURES (MOS)

(2019 Pattern) (Semester - III) (201002)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Use of non-programable calculator is allowed.
- 3) Assume any data, if required.
- Q1) a) A symmetric I section is having two flanges, each of 300 mm × 20 mm and vertical web of 20 mm thickness and 160 mm depth. The beam is subjected to shear force 200 kN. Draw Shear Force Distribution diagram.

 [9]
 - b) A rectangular simply supported beam of 5m span is subjected to a central point load of 100 kN. The given beam is 300 mm wide and 500 mm deep. Determine maximum bending stress induced in the section.

 Draw Bending Stress Distribution diagram.

 [9]

OR

- Q2) a) A 'T' beam, subjected to shear force of 200 kN. The flange is 200 mm × 30 mm and the web is 30 mm thick and 180 mm deep. Draw shear stress distribution diagram.
 - b) A symmetric I section of flanges 120 mm × 20 mm and web of thickness 20 mm and 100 mm depth, carrying uniformly distributed load of magnitude 80 kN/m over 4 m span. Calculate the maximum bending compressive stress. [9]

P.T.O.

Q3) a) A solid circular shaft of diameter 90 mm rotates at 130 rpm. The twist is observed as 3° over 6 m span. [9]

Determine power transmitted.

Take G = 80 GPa.

b) Determine normal, tangential and resultant stresses on a plane at 25° with major principal plane. The principal stresses of 120 MPa tensile on major principal plane and 50 MPa compressive on minor principal plane are acting at a point on the member. [8]

OR

- Q4) a) A solid circular shaft transmits 220 kW at 160 rpm. The maximum allowable shear stress is 60 MPa and angle of twist permitted is 2° in 3m length. Design suitable shaft. Take G = 78 GPa. [9]
 - b) A circular bar of diameter 80 mm diameter is subjected to axial compression force of 200 kN. Determine shear stress on a plane, on which the normal stress is 100 MPa. [8]
- Q5) a) Compare the crippling loads given by Euler's and Rankine's formulae for a steel strut 2.5 m long having outer & inner diameter as 40 mm and 30 mm respectively loaded through pin jointed at the ends. Take yield

stress as 320 M/nm² the Rankine's constant $\frac{1}{7500}$, E = 2 × 10⁵ MPa.

[9]

b) Explain 'Core of the Section' and obtain a core section for a hollow circular column of external and internal diameter 'D' and 'd' respectively.

[9]

OR

- Q6) a) A steel rod 6m long and 30 mm diameter is used as a column. One end is fixed and other is free. Determine the crippling load by Euler's formula. Take E = 200 GPa.
 - b) A rectangular column of 240 mm × 150 mm is subjected to a vertical load of 110 kN, acting at an eccentricity of 60 mm in a plane bisecting 150 mm side. Determine the maximum and minimum stresses. [9]

Q7) a) The beam is supported and loaded as shown in figure. Determine the position and value of Maximum deflection $EI = 1.4 \times 10^{-11} \text{ kN-mm}^2$. Use Macauly's method. [9]

b) Determine the vertical and horizontal deflection at point 'C' for the truss shown below. [8]

E = 200 GPa $A = 2 \times 10^{-4} \text{ m}^2 \text{ for all members.}$

Q8) a) Find slope artipports and at point 'C', deflection at 'C' and 'D' for the given team using Macaulay's method. [9]

b) Determine the deflection and slope at the free end of cantilever beam of span 'l' m, loaded with central point load 'w' kN. [8]

E 1 is constant.